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a b s t r a c t

The local dynamics of an axially moving string under aerodynamic forces is investigated

with a time-delayed velocity feedback controller. The retarded differential difference

governing equation is obtained in modal coordinates of a two-degree-of-freedom

system through Galerkin’s discretization procedure. The stability of trivial equilibrium

part. The Hopf bifurcation curves are determined in the controlling parameter spaces.

With the aid of the center manifold reduction, a functional analysis is carried out to

reduce the modal equation to a single ordinary differential equation of one complex

variable on the center manifold. The approximate analytical solutions in the vicinity of

Hopf bifurcations are derived in the case of primary resonance. The curves of

excitation–response and frequency–response curves are shown with the effect of time

delay. The stability analysis for steady-state periodic solutions of the reduced system

indicates the onset of local control parameter for vibration control and response

suppression. Moreover, the Poincaré–Bendixson theorem and energy considerations are

used to investigate the existences and characteristics of quasi-periodic solutions when

stability of the periodic solution is lost. Numerical results demonstrate the validity of

the analytical prediction. Two different kinds of quasi-periodic solutions are found.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Machinery belts, textile fibers, aerial cable tramways, power transmission chains and high-speed magnetic tapes are
important mass and energy transfer systems in engineering practice. Analysis of transverse vibration response plays an
important role in industrial design of these axially moving continua. From the mechanical point of view, axially moving
strings are flexible and easily undergo large deformation. The transverse oscillations can be generated due to the
oscillations of elastic supports and other external excitations. Consequently, the life expectancy and operation reliability of
the strings can be degraded. It is noted that axially moving strings belong to gyroscopic systems with infinite numbers of
degrees-of-freedoms loaded by Coriolis force resulted from flowing relative references. Mathematically, the motion of the
string is governed by a second-order partial differential equation. The partial derivative with respect to both temporal and
spatial variables known as the term of the convective acceleration renders complex, speed-dependent modes, which brings
great challenge in finding closed-form solutions for nonlinear systems. Previous investigations have concentrated on the
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linear and nonlinear vibration responses of axially moving strings under various excitations and significant developments
have been made for several decades (see e.g. [1–4]).

In recent years, there has been an increasing interest in suppressing the vibration of axially moving strings, since the
controllability and observability conditions of distributed gyroscopic systems with point sensors and point actuators were
presented [5,6]. It is found in [6] that only one collocated point sensor and actuator is required for vibration control of an
axially moving string in both finite and infinite dimensional models. Vibration suppression of moving strings has been
conducted using various techniques, e.g. the Laplace transform domain approach [7–9], wave cancellation method
[10–12], the Lyapunov energy method [13,14] and the sliding mode technique [15,16]. The latter two methods are capable
of controlling the vibration of axially moving strings with nonlinear models. However, they can only be implemented as
boundary control, which is difficult to apply in some engineering circumstances [3]. Besides, the effect of external
excitations has been neglected in most cases. It seems that these approaches are not well-suited to admit nonlinear
dynamical characteristics, which are prevalent in transverse vibration of axially moving continua especially with high
transport speed.

Time-delayed feedback is considered to be an ideal choice to suppress the nonlinear responses of dynamical systems,
and time-delayed controllers have been applied to plenty of linear and nonlinear dynamical systems. A number of
investigations [17–27] on simple nonlinear time-delayed models indicated that time delay can be regulated as a switch to
stabilize the equilibrium and suppress the steady-state periodic solution. The concept of time delay has been adopted in
the vibration control of axially moving strings. In [7] the design of stabilizing controller with time delay was carried out for
both collocation and non-collocation of the sensors and actuators. The destabilizing effect of non-collocated sensors and
actuators was eliminated for a translating string through introduction of a specific time delay in the feedback controller [8].
The non-collocated control with time delay was further extended to viscously damped strings [9]. Experimental
verification of the time delay theory of a translating string was reported in [28]. Nevertheless, all of the previous controllers
with time delay were designed based on the linear models of axially moving strings. No publications have been found
addressing the dynamics of nonlinear models of axially moving strings with time-delayed feedback controller to the
authors’ knowledge. It is expected that the time-delayed feedback technique can be extended to vibration control of
nonlinear axially moving strings. More specifically, the parameter of time delay can be adopted as an active parameter to
stabilize the static configuration and to suppress the nonlinear vibrations of the string.

To better suppress undesirable motions of axially moving strings, it is important to solve the delay-induced
vibration responses and understand its complex behavior related to the time delay. In the present paper, the delay-
induced dynamics of an axially moving string under steady wind excitation is investigated. A linear, directly-delayed
velocity-feedback controller pertaining to preserving the equilibrium of the original system is introduced. Geometrical
nonlinearity caused by large deformation and velocity nonlinearity caused by aerodynamic excitations are both
considered. The paper is organized as follows: The dynamical model of an axially moving string with time-delayed
feedback control is provided in Section 2. A truncated, second-order system in modal coordinates is derived by Galerkin’s
discretization procedure. The explicit determination of the stability domain of the trivial equilibrium, in addition to curves
of the Hopf bifurcation and critical time delay, is presented in Section 3 by evaluating counting multiplicities of the
eigenvalues with positive real parts. In Section 4, the center manifold reduction in the vicinity of single Hopf bifurcation
point as well as the homological equation for the local coordinate system on the center manifold is presented. The
approximate analytical periodic solutions and their stabilities for both the self-excited system and primary resonance
system are obtained in Section 5. The existence of two different kinds of quasi-periodic solutions is also discussed with the
aid of the Poincaré–Bendixson theorem and an energy-like function. Illustrative examples are presented in Section 6,
where the analytical and numerical results are compared. The local control parameters for suppressing the steady-state
responses are shown. Finally, discussions and conclusions are given in Section 7.

2. Problem statement and formulation

A sagged string that axially moves with a constant speed between two fixed eyelets is depicted in Fig. 1. The string is
subjected to one pair of collocated sensor and actuator for control of transverse displacement response denoted by w(x,t).
Actuatorxa

Sensor

( ),w x t

( ),wf x t c
xo

Wind-flow Controller

Fig. 1. A sketch of an axially moving string with a collocated time-delayed velocity feedback controller under wind excitation.
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Following the non-dimensionalization of [29] and considering large deformation of the string, the governing equation of
the closed-loop system can be derived as

€wðx,tÞþ2c _wuðx,tÞþðc2�c2
0Þw

00ðx,tÞþdð _wðx,tÞþcwuðx,tÞÞ�
3

2
k3wu

2
ðx,tÞw00ðx,tÞ

¼ fwðx,tÞþ feðx,tÞþuðxa,tÞ ð0rxr1Þ: (1)

where primes and dots denote partial derivatives with respect to x and t, respectively; c is the non-dimensional transport
speed; c0 is the non-dimensional axial tensile force; d is the viscous damping coefficient related to the absolute velocity
of the moving string; k3 is the non-dimensional extensional rigidity of the string. The three terms of the right-hand side of
Eq. (1) represent the aerodynamic ‘‘lift’’ force, the distributed external excitation and the active control force on the string,
respectively. In addition, the boundary condition of displacement is w(0,t)=w(1,t)=0. Notice that the direction of wind flow
is assumed perpendicular to the Oxw-plane.

The vertical component of non-dimensional aerodynamic forces can be expressed as fwðx,tÞ ¼ f1 _wðx,tÞþ f3 _w
3
ðx,tÞ where

f1=1/2a0c1v, f3=1/2a0c3v�1, v is the average velocity of the wind. c1, c3 and a0 are aerodynamic coefficients depending on
the cross section of the string, angle of attack and the flow conditions. For direct time-delayed velocity feedback with the
collocated sensor and actuator, the sensor measures the velocity of string at the sensor location. Then, the signal is
amplified by a gain and delayed with a delay-machine. This control input is re-applied to the string by an actuator.
Therefore, the active control force can be given by uðxa,tÞ ¼ a _wðx,t�tÞdðx�xaÞ, where a is the velocity feedback gain, t and
xa are time delay constant and location of the sensor and the actuator, respectively. They are also controlling parameters to
be designed. d(U) is Dirac’s delta function.

A second-order Galerkin’s discretization scheme is adopted to expand the displacement: wðx,tÞ ¼
P

qiðtÞsinðipxÞ, i¼ 1,2,
which yields the nonlinear equations in the truncated modal coordinates:

€q1þm _q1�a1 _q2þkq1�a2q2�3=4f3ð _q
3
1þ2 _q1 _q

2
2Þþ3k3p4ð1=8q3

1þq1q2
2Þþa1 _q1tþa2 _q2t ¼ 0

€q2þa1 _q1þm _q2þa2q1þ4kq2�3=4f3ð _q
3
2þ2 _q2 _q

2
1Þþ3k3p4ð2q3

2þq2q2
1Þþa2 _q1tþa3 _q2t ¼ 0, (2)

where

_q1t ¼ _q1ðt�tÞ, _q2t ¼ _q2ðt�tÞ, k¼ p2ðc2
0�c2Þ, a1 ¼ 16c=3,a2 ¼ 8dc=3,

m¼ d�f1, a1 ¼�2asin2
ðpxaÞ, a2 ¼�2asinðpxaÞsinð2pxaÞ,a3 ¼�2asin2

ð2pxaÞ:

It can be seen that if the sensor and the actuator are not placed at nodes of modes to be controlled, i.e.aia0, i=1,2,3, the
feedback gain a and time delay t can be used as active parameters to control the axially moving string, which is in
agreement with the controllability and observability condition of distributed gyroscopic systems [6].

3. Stability of the equilibrium and Hopf bifurcation

To analyze the local stability of the system, the equilibrium is examined by removing the time-related terms in Eq. (2),
yielding

kq1�a2q2þ3k3p4ð1=8q3
1þq1q2

2Þ ¼ 0,

a2q1þ4kq2þ3k3p4ð2q3
2þq2q2

1Þ ¼ 0, (3)

which further gives

kq2
1þ4kq2

2þ3k3p4ð1=8q4
1þ2q2

1q2
2þ2q4

2Þ ¼ 0: (4)

Eq. (2) has a unique equilibrium point when the transport speed is less than the critical transport speed (i.e. coc0):
ðq1, _q1,q2, _q2Þ ¼ ð0,0,0,0Þwhich represents the static configuration of the string. There may exist non-trivial equilibrium
points when the string travels with supercritical speeds. Although the current concern is limited to subcritical transport
speed, the non-trivial equilibrium points of supercritical moving system can be studied similarly after coordinate
transformation. The characteristic equation corresponding to the linear equation of Eq. (2) evaluated at the trivial
equilibrium point is

PðlÞ ¼ l4
þl3
ðb3þd3e�tlÞþl2

ðb2þd2e�tlÞþlðb1þd1e�tlÞþb0 (5)

where l is the eigenvalue of the system in Eq. (2), and

b0 ¼ a2
2þ4k2, b1 ¼ 5mkþ2a1a2, b2 ¼ a2

1þm
2þ5k,

b3 ¼ 2m, d1 ¼ 4ka1þka3, d2 ¼ ða1þa3Þm, d3 ¼ a1þa3: (6)

For the uncontrolled system, the explicit conditions were provided by Wang et al. [30] and Lu et al. [31], both taking the
transport speed and wind speed as control parameters, for loss of stability and generation of stable limit cycles via the Hopf
bifurcation based on the Routh–Hurwitz stability criterion. It can be seen that the stability conditions of the uncontrolled
system and the controlled system without time delay are essentially the same if the coefficients of the characteristic
polynomial are detuned by b1þd1-

~b1, b2þd2-
~b2, b3þd3-

~b3. Therefore, the stability conditions of the controlled
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system without time delay have the same form as in [31]:

~b040, ~b140, ~b240, ~b340, ~b1ð
~b3
~b2�

~b1Þ�
~b

2

3
~b040 (7)

and the Hopf bifurcation occurs when ~b1ð
~b3
~b2�

~b1Þ�
~b

2

3
~b0 ¼ 0:

Basically, the stability condition for a controlled system with time delay is different from an uncontrolled system since
the characteristic polynomial is an exponential-transcendental function that possesses up to infinite number of
eigenvalues. Further, the stability domain of the controlled system may be variable in the parameter space when time
delay changes. It has been learned that there are only a finite number of solutions that lies in the right half-complex plane
for retarded differential difference equation if the characteristic equation is an entire function [32,33]. To determine the
stability domain of the retarded differential difference equation, a Lemma for a polynomial–exponential characteristic
system was presented in [34] to analyze the stability of equilibrium of a single-action mechanism using a scalar equation
with a constant time delay. Xu and Yu [21] extended the method to a second-order characteristic equation of a self-
sustained system with delayed velocity feedbacks. Their work is advanced in the present paper to a generalized theorem
for any polynomial–exponential equations with constant time delays.

Theorem 1. Consider a generalized polynomial–exponential characteristic function P(l, t)=
Pm

i ¼ 0 l
i
ðb̂iþ d̂ie

�tilÞ, where

b̂i, d̂i 2 R, b̂ia0, and tiZ0, 0r irm. Denote the number of roots of equation P(l, t)=0, where Re(l)40, as M(t) the

counting multiplicity. Then M(t) can only be changed when l passes through the imaginary axis as one of the time delays tI is

varied.

Proof. Let l=l(t) be a root of equation P(l, t)=0 that satisfies 0oRe(l)oN. Since P(l, t) is a polynomial–exponential
function, l(t) is an analytical function of t. Based on Rouché’s theorem (see e.g. [35]), there exists an e40 such that
for9t�u9oe, l(u) has the same multiplicity as l(t). Suppose that M(t) changes without a single root appearing on the
imaginary axis, then such a change can only occur when there is a root at infinity. Hence, there exists a ~t and a sequence of
f ~tðiÞg such that lim

i-1
~tðiÞ ¼ ~t, lim

i-1
9lð ~tðiÞÞ9¼1, and Reðlð ~tðiÞÞÞZ0, where9 U 9denotes complex modulus. As a result

lim
i-1

9Pðl,tÞ=lm9¼ lim
i-1

Xm

i ¼ 0
li�m
ðb̂iþ d̂ie

�tilÞ

��� ���¼ 9bm9a0

which contradicts with P(l, t)=0. &

For Eq. (5), it can be found that m=4, b4=1 and ti=t. Thus, Theorem 1 can be applied there by letting
b̂i-bi, d̂i-di, i¼ 0,1,2,3, where bi and di are expressed in Eq. (6). The above Theorem 1 implies that stability of
equilibrium of system (2) can only be lost through the Hopf bifurcation since la0 due to b0 ¼ a2

2þ4k240. Thus, the effect
of time delay on stability of the equilibrium can be evaluated by examining the change of M(t) using the eigen-polynomial
in Eq. (5). Let l= Ib, where I¼

ffiffiffiffiffiffiffi
�1
p

and b40 is the bifurcation frequency of the equilibrium. Substituting l in Eq. (5) and
separating the real and imaginary parts yields

b4
�b2b2þb0 ¼ ðb

3d3�bd1ÞsinðtbÞþb2d2 cosðtbÞ,
�b3b3þbb1 ¼�b

2d2 sinðtbÞþðb3d3�bd1ÞcosðtbÞ, (8)

which leads to the condition for the Hopf bifurcation

b8
c þðb

2
3�d2

3�2b2Þb
6
c þð2d1d3þb2

2þ2b0�2b1b3�d2
2Þb

4
c þðb

2
1�2b0b2�d2

1Þb
2
c þb2

0 ¼ 0: (9)

provided ðb3
c d3�bcd1Þ

2
þb4

c d2
2a0 is satisfied. It is noticed from Eq. (9) that there are at most four critical frequencies

depending on the parameters of system, which is different from a controlled system without time delay where there are no
more than two critical frequencies. The bifurcation value of time delay tc can be obtained by solving Eq. (8):

tcn,i ¼ b�1
ci ðsiþ2npÞ, n¼ 0,1,. . ., i¼ 1,. . .,4, 0rsio2p,

sinðsiÞ ¼ ððb
3
cid3�bcid1Þ

2
þb4

cid
2
2Þ
�1
ððb4

ci�b
2
cib2þb0Þðb

3
cid3�bcid1Þ�b

2
cid2ðbcib1�b

3
cib3ÞÞ,

cosðsiÞ ¼ ððb
3
cid3�bcid1Þ

2
þb4

cid
2
2Þ
�1
ððb3

cid3�bcid1Þðbcib1�b
3
cib3Þþb

2
cid2ðb

4
ci�b

2
cib2þb0ÞÞ: (10)

where bci and tcn,i represent the ith critical frequency and its nth time delay of bifurcation corresponding to bci,
respectively.

The change of the counting multiplicity is identified by the sign dl=dt evaluated at the critical points. The transversality
condition for the Hopf bifurcation can be satisfied if dl=dta0: In the present study, the dt=dl is used for it is easily
calculated by differentiating the characteristic equation (5):

Reðdt=dlÞ9l ¼ Ib ¼ ððb
3d3�bd1Þ

2
þb4d2

2Þ
-1
ð2b2
ð2d3d1�d2

2Þ�3b4d2
3�d2

1Þþððb
4
�b2b2þb0Þ

2
þðbb1�b

3b3Þ
2
Þ
-1

ð4b6
þ3b4

ðb2
3�2b2Þþ2b2

ð2b0þb2
2�2b3b1Þ�2b2b0þb2

1Þ (11)

Hence,

sgnðReðdt=dlÞ9l ¼ IbÞ ¼ sgnð4b6
þ3ðb2

3�d2
3�2b2Þb

4
þ2ð2d1d3þb2

2þ2b0�2b1b3�d2
2Þb

2
þðb2

1�2b0b2�d2
1ÞÞ: (12)



Fig. 2. Stability divisions in parameter spaces of feedback gain a and time delay t. Integers 0–5 indicate the number of eigenvalues in the right half-plane

of the complex space. I, II, and III denote the stability regions. The critical curves of time delay are computed by (10), denoted by

scn,i ,n¼ 0,1,2,. . .,i¼ 1,2,3,4. The solid lines and the dash-dotted lines represent the increase or decrease of the counting multiplicity as time delay

increases.
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With the above-mentioned analysis, the stable domain in the parameter spaces can be identified as follows: First,
obtain the bifurcation points and assess their stability at t=0 based on Eq. (6), and label the parameter spaces with 0, 1 or 2
as the value of M(0). Second, solve the eigen-frequency equation (9) with the control parameter varying from the
bifurcation point to obtain the critical time delay tcn,i. Finally, check Eq. (12) for the transversality condition of Hopf
bifurcation and update M(t). The stable region of the equilibrium can be completely determined with the counting
multiplicity being zero.

Consider a specific system as an illustrative example, where the parameters are chosen to be c0=1, c=0.5, d=0.04,
a0=4.7766, c1=0.2992, c3=�0.2766, v=0.1 and xa ¼

ffiffiffi
2
p

=2: The feedback gain a is considered as the governing parameter.
In Fig. 2, the stability sub-domains and bifurcation curves of time delay in the parameter space of (a, t) are shown, where
solid and dash-dotted lines represent the critical curves cross which the counting multiplicity increases and decreases with
an increasing time delay. For t=0, the frequencies and feedback gains of the first and second Hopf bifurcations are
numerically obtained, shown as points B1 (6.1980,�0.02235)and B2 (2.3886, �0.01559), respectively. ao�0.02235 is the
only stable region for the controlled equilibrium configuration of the string without time delay. Multiple stable regions
denoted by I, II and III are determined when the time delay is introduced. It is found in Fig. 2 that direct velocity feedbacks
without time delay are robust for small lag of feedback since the adjacent region I is stable. Parameters in regions II and III
with large time delay and small gain of velocity feedback can also be used to suppress vibration of the string. In addition,
several non-resonant double Hopf bifurcation points are found in Fig. 2 where two different curves intersect with different
directional derivatives at the bifurcation points (e.g. P1, P3, P5), two pairs of eigenvalues cross through the imaginary axis
simultaneously. There exist rich dynamical behaviors near the non-resonant double Hopf point whose complete
geometrical structures are still difficult to understand.

Next, results from numerical integrations using several time delays are given to show dynamics of the system (2)
without external loadings. The integrations are carried out by the BS (2, 3) Runge–Kutta method [36] based on a standard
Runge–Kutta formula and cubic Hermite interpolation among mesh points of time. Time histories and phase portraits of
response for different time delays with a=0.2, v=0.1 are shown in Fig. 3 using initial condition ðq1, _q1,q2, _q2Þ ¼

ð0:01,0,�0:05,0Þ at t=0 and trivial lag functions for to0. It can be seen that vibration of the string is reduced by time delays
for both small time delay of t=0.1(shown in Figs. 3(a) and 3(b)) and large time delay of t=3 (shown in Fig. 3(g) and (h)).
A small time delay is advantageous since the transient response decays faster than that with a larger delay. Similar to
uncontrolled systems [30,31], an isolated periodic solution, i.e. limit cycle, can be found in the phase plane after the
equilibrium becomes unstable via the Hopf bifurcation, as shown in Fig. 3(c) and (d) with t=0.5 and (e) and (f) with t=2.5.
The analytical solutions of the periodic solutions will be derived in the next section.
4. Center manifold reduction

The delayed variables are generally expanded into Taylor series in traditional perturbation schemes to investigate the
delay-induced dynamics of nonlinear systems. More stringent results can be obtained by using the normal form theory and
center manifold reduction [19,21,23,24,37]. The center manifold reduction theorem provides a systematic approach to
reduce the infinitely dimensional state spaces of a delayed differential equation. The governing equation of axially moving



Fig. 3. Time trajectories and phase portraits for different time delays t=0.1(a, b), t=0.5(c, d), t=2.5(e, f), and t=3 (g, h) with velocity feedback gain

a=0.2, v=0.1.
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strings with time delay is a functional differential equation and an infinite dimensional system in the mathematical sense.
In the neighborhood of a single Hopf bifurcation point, the existence of a local integral manifold, which is homeomorphic
to an open disk in a two-dimensional real space was studied in [38] and the properties of the manifold were established.
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A functional analysis should be carried out in an abstract Banach space to reduce the infinite dimensional equation to a two
dimensional one.

To investigate the effect of external excitation in the case of primary resonance, the string is assumed to be loaded by a
distributed in-plane excitation: fa cosðX0tÞsinðpxÞ, where fa and X0 are non-dimensional forcing amplitude and frequency,
respectively. To transform the differential difference equation (2) into a retarded functional differential equation, a Banach
space C([�t, 0],R4) of continuous functions is defined to map the interval [�t, 0] into R4 with the norm
9fðyÞ9¼ sup�tryo09fðyÞ9 for any fAC. The functional operator equation is obtained as

_X ¼ LXtþN3ðXtð0ÞÞþFa (13)

where

X ¼ ðx1,x2,x3,x4Þ
T9ðq1, _q1,q2, _q2Þ

T , XtðyÞ ¼ XðtþyÞ,�tryr0:

The linear operator L, the forcing vector Fa, and the nonlinear vector N3 are defined as

LXt ¼

Z0

�t

½dZðyÞ�XtðyÞ,

Fa ¼ ð0, f a cosðX0tÞ, 0, 0ÞT ,

N3ðXtð0ÞÞ ¼

0

3=4f3ðx
3
2tð0Þþ2x2tð0Þx

2
4tð0ÞÞ�3k3p4ð1=8x3

1tð0Þþx1tð0Þx
2
3tð0ÞÞ

0

3=4f3ðx
3
4tð0Þþ2x2

2tð0Þx4tð0ÞÞ�3k3p4ð2x3
3tð0Þþx2

1tð0Þx3tð0ÞÞ

0
BBBB@

1
CCCCA, (14)

by using the Riesz representation theorem (see Hartig [39]) and the matrix-valued bounded variation

dZðyÞ ¼

0 dðyÞ 0 0

�kdðyÞ �mdðyÞ�a1dðyþtÞ a2dðyÞ a1dðyÞ�a2dðyþtÞ
0 0 0 dðyÞ
�a2dðyÞ �a1dðyÞ�a2dðyþtÞ �4kdðyÞ �mdðyÞ�a3dðyþtÞ

2
66664

3
77775dy:

Taking wind speed v, velocity feedback gain a and time delay t as the controlling parameters, it is assumed that Eq. (5)
has two simple roots 7 Ibc and the real parts of other roots are all negative at parameters vc, ac, and tc. Let
v¼ vcþv, a¼ acþa, t¼ tcþt and introduce a scaled time variable t¼ tt, Eq. (13) can be transformed into

Xu¼ Lð0ÞXtþL1ðv,a,tÞXtþðtN3ðXtð0ÞÞþPðXtð0Þ, Xtð�1ÞÞÞþtFa (15)

where

Lð0ÞfðyÞ ¼
Z0

�1

½dZcðyÞ�fðyÞ, L1ðv,a,tÞfðyÞ ¼
Z0

�1

½dZðy,v,a,tÞ�f yð Þ,

PðXtð0Þ, Xtð�1ÞÞ ¼�

0

mtx2tð0Þþa1tx2tð�1Þþa2tx4tð�1Þ

0

mtx4tð0Þþa2tx2tð�1Þþa3tx4tð�1Þ

0
BBBB@

1
CCCCA, (16)

and

dZcðyÞ ¼

0 tcdðyÞ 0 0

�tckdðyÞ �tcmcdðyÞ�tca1cdðyþ1Þ tca2dðyÞ tca1dðyÞ�tca2cdðyþ1Þ

0 0 0 tcdðyÞ
�tca2dðyÞ �tca1dðyÞ�tca2cdðyþ1Þ �4tckdðyÞ �tcmcdðyÞ�tca3cdðyþ1Þ

2
66664

3
77775dy,

dZðy,v,a,tÞ ¼

0 tdðyÞ 0 0

�tkdðyÞ �g1dðyÞ�g2dðyþ1Þ ta2dðyÞ ta1dðyÞ�g3dðyþ1Þ

0 0 0 tdðyÞ
�ta2dðyÞ �ta1dðyÞ�g3dðyþ1Þ �4tkdðyÞ �g1dðyÞ�g4dðyþ1Þ

2
66664

3
77775dy,

where

m1c ¼ d�1=2a0c1vc , m1 ¼�1=2a0c1va1 ¼�2asin2
ðpxaÞ,

a1c ¼�2ac sin2
ðpxaÞ, a2c ¼�2ac sinðpxaÞsinð2pxaÞ,

a2 ¼�2asinðpxaÞsinð2pxaÞ, a3 ¼�2asin2
ð2pxaÞ, a3c ¼�2ac sin2

ð2pxaÞ,
g1 ¼ ðmctþtcmÞ, g2 ¼ ða1ctþtca1Þ, g3 ¼ ða2ctþtca2Þ, g4 ¼ ða3ctþtca3Þ:
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Defining the following operators for f 2 Cð½�1,0�,R4
Þ:

Dð0Þf¼
dfðyÞ=dy, �1ryo0

Lð0ÞfðyÞ, y¼ 0
,

(

D1ðy,v,a,tÞf¼
0, �1ryo0

L1ðy,v,a,tÞfðyÞ, y¼ 0
,

(

Rf¼
0, �1ryo0

tN3ðXtð0ÞÞþPðXtð0Þ,Xtð�1ÞÞþtFa, y¼ 0
:

(
(17)

Since dXt=dy¼ dXt=dt, Eq. (15) can be casted into the form

Xut ¼Dð0ÞXtþD1ðv,a,tÞXtþRXt , (18)

which involves a single unknown vector Xt rather than two vectors X and Xt as in Eq. (15).
The adjoint spaceC* ¼ Cð½0,1�,R4

Þshould also be defined to decompose C. For any cAC* the infinitesimal generator D*(0)
of solution operator of the formal adjoint equation of (18) is given as

D*ð0Þc¼

�dcðxÞ=dx, 0oxr1,R0
�1

½dZT
c ðsÞ�cð�sÞ, x¼ 0,

8><
>: (19)

Further, a bilinear inner product is needed to construct the center manifold reduction. For any cAC* and fAC, the
bilinear inner product is defined as

/c,fS¼c
T
ð0Þfð0Þ�

Z0

y ¼ �1

Z y

x ¼ 0
c

T
ðx�yÞ½dZðyÞ�fðxÞdx, (20)

such that

/c,Dð0ÞfS¼/D*ð0Þc,fS:

Let L={Io, � Io}and denote F and C*as the bases for the generalized eigenspace PL of Eq. (18) associated withL and its
formal adjoint equation, respectively, i.e.

Dð0ÞU¼ IoF, D*ð0ÞW*
¼�IoW*: (21)

Solving Eq. (21), the bases obtained are

UðyÞ ¼ ð1,Io=tc ,f3,Iof3=tc ,ÞT eIoy,

W*
ðxÞ ¼ ðtcðkþa2j4Þ=Io,1,tcð4kj4�a2Þ=Io,j4Þ

T eIox, (22)

which can be normalized by a complex scalar

B¼�tcðkþa2j4Þ=Ioþ Io=tc�tcð4kj4�a2Þf3=Ioþ Iobf3j4=tc�Ioða1cþa2cj4Þe
�Io�Ioða2cþa3cj4Þbf3e�Io,

where

f3 ¼ ðtca2þða1þa2ce�IoÞIoÞ==ðo2=tc�4ktc�Ioðmcþa3ce�IoÞÞ,

j4 ¼ ðtca1ceIoþtcmc�kt2
c =Io�IoÞ=ðt2

c a2=Io�tca1�a2ctceIoÞ:

Thus, a new basisW¼ B
�1

W*is constructed with orthogonality conditions/C, FS=1and /W,US¼ 0 satisfied. Any element
XtAC can be decomposed by

Xt ¼UyðtÞþUyðtÞþXQL
t , (23)

where yðtÞ9/W,XtS and QL is the complementary space ofPL. Substituting Eq. (23) into Eq. (18) and using the bilinear
inner product defined in Eq. (20) and the orthogonality conditions, the homological equation restricted to the center
manifold is written as

/W, _X tS¼/W,ðDð0ÞUþD1ðv,a,tÞUÞSyþ/W,RXtS, (24)

yielding

_yðtÞ ¼ IoyðtÞþðr1ðv,a,tÞþr2ðv,a,tÞÞyðtÞþg30y3ðtÞþg219yðtÞ9
2
yðtÞ

þg129yðtÞ9
2
yðtÞþg03y3

ðtÞþ fa cosðO0tÞþOð9y tð Þ94
Þ (25)

where

r1ðv,a,tÞ ¼ �B�1ðIoð1þj4f3Þmþ Ioe�Ioa1þ Ioe�Ioðf3þj4Þa2

þ Iof3j4e�Ioa3þð2ða2j4�a2f3þkþ4kf3j4Þþ Io=tcða1ce�Ioþmc

þa1j4�a1f3þf3a2ce�Ioþmcj4f3þj4a2ce�Ioþf3j4a3ce�IoÞÞt,
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r2ðv,a,tÞ ¼ �B�1e�IoIot=tcða1þf3a2þða2þf3a3Þj4þð1þj4f3Þe
IomÞ,

g30 ¼�tB�1ð3f3Io3ð4t3
c Þ
�1
ð1þ2f2

3þ2j4f3þj4f
3
3Þþ3k3p4ð1=8þf2

3þj4f3þ2j4f
3
3ÞÞ,

g21 ¼ tB�1ð3f3Io3ð4t3
c Þ
�1
ð3þ2f2

3þ4j4f3þ2j4f3þ4f3f3þ3j4f3f
2
3Þ

�3k3p4ð3=8þf2
3þ2j4f3þ2f3f3þj4f3þ6j4f3f

2
3ÞÞ,

g12 ¼�tB�1ð3f3Io3ð4t3
c Þ
�1
ð3þ2f

2

3þ4j4f3þ2j4f3þ4f3f3þ3j4f3f
2

3Þ

þ3k3p4ð3=8þf
2

3þ2j4f3þj4f3þ2f3f3þ6j4f3f
2

3ÞÞ,

g03 ¼ tB�1ð3f3Io3ð4t3
c Þ
�1
ð1þ2f

2

3þ2j4f3þj4f
3

3Þ�3k3p4ð1=8þf
2

3þj4f3þ2j4f
3

3ÞÞ:

5. Delay-induced periodic solutions and quasi-periodic solutions

As a complex ordinary differential equation, Eq. (25) exhibits the geometrical structure of the solution restricted to the
center manifold of Eq. (2). At this stage, the traditional perturbation method can be adopted to analyze the approximate
local solutions, which can be transformed into the original variables through Eq. (23). In the subsequent text, the analytical
self-excited periodic solutions of the system without external excitations are obtained by means of Poincaré normal form
in complex space. The external primary resonant responses of the string are investigated through the averaging method
(c.f. [40]).
5.1. Periodic solution of non-forced system

Let fa=0. The approximate analytical periodic solution is derived for the homological equation (25), rewritten as

_y ¼ rðmÞyþðg30ðmÞy3þg21ðmÞ9y9
2
yþg12ðmÞ9y9

2
yþg03ðmÞy3

ÞþOð9y94
Þ, (26)

where m denotes the perturbation parameter i.e.t,a,or v, and r(m)= Io+r1(m)+r2(m), where rð0Þ ¼ Io, Reðruð0ÞÞa0.
Eq. (26) can be converted into the Poincaré normal form for all sufficiently small 9m9,

_~y ¼ rðmÞ ~yþg21ðmÞ9 ~y9
2 ~y (27)

with the following smooth complex coordinate transformation

y¼ ~yþh30 ~y
3
þh12 ~y ~y

2
þh03 ~y

3
, (28)

where

h30 ¼ g30ðmÞð2rðmÞÞ�1, h12 ¼ g12ðmÞð2rðmÞÞ�1, h03 ¼�g03ðmÞðrðmÞ�3rðmÞÞ�1

and the only remaining cubic term is a resonant term. Eq. (27) defines a dynamical system that is locally, topologically
equivalent to the system (26) in the neighborhood of the Hopf bifurcation point, since higher-order terms in Eq. (26) do not
affect the bifurcation behavior [41].

Next, the following equation is obtained with the aid of the conjugant equation of (27):

dð ~y ~yÞ=dt¼ 2 ~y ~yReðrðmÞþg21ðmÞ ~y ~yÞ: (29)

Therefore, dð ~y ~yÞ=dt¼ 0 is satisfied for the steady-state periodic solution of Eq. (27), which implies

~y ¼ 0 or ReðrðmÞþg21ðmÞ ~y ~yÞ ¼ 0: (30)

For periodic solutions, it follows that ~y ~y ¼ ~y2
s a0. Substituting m¼ m1

~ysþm2
~y2

s þ � � �into the second equation of (30) and
equating coefficients of like powers of ~ys, we obtain

Reðruð0ÞÞm1 ¼ 0, Reðg21ð0ÞÞþReðruð0ÞÞm2 ¼ 0,

Reðgu21ð0ÞÞm1þReðruð0ÞÞm3þReðr00ð0ÞÞm1m2 ¼ 0, (31)

which leads to m1 ¼ 0, m2 ¼�Reðg21ð0ÞÞ=Reðruð0ÞÞ, and m3 ¼ 0.
Separating the real and imaginary parts of Eq. (27) and using the second equation of (30) again yields

~yu ¼ I ~yImðrðlÞþg21ðlÞ ~y
2
s Þ: (32)

The solution to Eq. (32) can be expressed as ~y ¼ ~yse
I ~oð ~ysÞt , where ~oð ~ysÞ ¼ ImðrðmÞþg21ðmÞ ~y2

s Þ. Consequently, the
bifurcating periodic solution of (26) can be derived by using the inverse coordinate transformation of (28), as

y¼ ~yse
I ~oð ~ysÞtþ ~y3

s ðh30e3I ~oð ~ysÞtþh12e�I ~oð ~ysÞtþh03e�3I ~oð ~ysÞtÞ (33)

and the original modal ordinates can be obtained by Xtð0Þ ¼ 2ReðUð0ÞyðtÞÞ.
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5.2. Primary resonance response of the forced system

The approximate analytical solutions of Eq. (25) can be obtained by using the averaging method. Introducing a scaling
time t-ot and lettingy¼

ffiffiffi
e
p
ðy1þ Iy2Þ, fa ¼ e3=2ðfa1þ fa2IÞ into the reduced form of Eq. (25) and separately equating like

powers of the real and imaginary parts leads to

_y1

_y2

 !
¼

0 �1

1 0

� �
y1

y2

 !
þ

e
o

k11y1þk12y2þk311y3
1þk312y2

1y2þk313y2
2y1þk314y3

2þ fa1 cosðXtÞ

k21y1þk22y2þk321y3
1þk322y2

1y2þk323y2
2y1þk324y3

2þ fa2 cosðXtÞ

 !
, (34)

where X¼X0=o, X0 �o, 1�X2
¼ es and

k11 ¼ k22 ¼ e�1Reðr1þr2Þ, k21 ¼�k12 ¼ e�1Imðr1þr2Þ,

k311 ¼ Reðg30þg03þg12þg21Þ, k321 ¼ Imðg30þg03þg12þg21Þ,

k312 ¼ Imðg12�g21þ3g03�3g30Þ, k322 ¼ Reðg21�g12þ3g30�3g03Þ,

k313 ¼ Reðg12þg21�3g30�3g03Þ, k323 ¼ Imðg12þg21�3g30�3g03Þ,

k314 ¼ Imðg12�g21þg30�g03Þ, k324 ¼ Reðg21�g12þg03�g30Þ:

The van der Pol transformation [40]

z1

z2

 !
¼
�sinðXtÞ X�1 cosðXtÞ

cosðXtÞ X�1 sinðXtÞ

" #
y1

y2

 !
(35)

is adopted to rewrite Eq. (34) as follows:

_z1

_z2

 !
¼
es
O

cosðXtÞy1

sinðXtÞy1

 !
þ

e
o
�sinðXtÞ O�1cosðXtÞ

cosðXtÞ O�1sinðXtÞ

" #
f1ðy1,y2Þþ fa1 cosðXtÞ

f2ðy1,y2Þþ fa2 cosðXtÞ

 !
, (36)

which can be averaged. y1 and y2 are obtained by the inverse transformation of the van der Pol transformation in Eq. (35)
and f1(y1,y2), f2(y1,y2) represent the non-homogeneous terms of y1, y2 on the right-hand side of Eq. (34). The equations of
slowly varying amplitude and phase can be obtained by inserting z1 ¼ rðtÞsinðfðtÞÞ, z2 ¼ rðtÞcosðfðtÞÞinto Eq. (36) and
averaging it over one period T ¼ 2p=X

_r ¼ eðP21rþP23r3þP31 sinðfÞþP32 cosðfÞÞ,

r _f ¼ eðP11rþP13r3þP31 cosðfÞ�P32 sinðfÞÞ, (37)

where

P11 ¼ ð2XoÞ�1
ðsoþk21�k12X

2
Þ, P21 ¼ ð2oÞ�1

ðk11þk22Þ,

P31 ¼ ð2XoÞ�1fa2, P13 ¼ ð8XoÞ�1
ð3k321þðk323�k312ÞX

2
�3k314X

4
Þ,

P32 ¼ ð2oÞ�1fa1, P23 ¼ ð8oÞ�1
ð3k311þk322þðk313þ3k324ÞX

2
Þ:

The equilibrium points of Eq. (37) corresponding to the phase-locked, steady-state periodic solutions of the system (34)
can be solved by requesting _r ¼ 0, _f ¼ 0. The amplitude response equation of the periodic solution can be obtained
through

Fðr,mÞ ¼ ðP21rþP23r3Þ
2
þðP11rþP13r3Þ

2
�ðð2XoÞ�1fa2Þ

2
�ðð2oÞ�1fa1Þ

2
¼ 0: (38)

The phase can be obtained from Eq. (37) once the steady state amplitude is solved, and the forced response of the string
restricted to the center manifold is given by

Xtð0Þ ¼ 2eReðUð0ÞðrscosðXtþfsÞþ IXrssinðXtþfsÞÞÞ: (39)

where ðrs,fsÞ are fixed points of Eq. (37).
The eigenvalues of the Jacobian matrix evaluated at the fixed point (rs, fs) are solved through the characteristic

equation

l2
�PlþQ ¼ 0, (40)

where

P¼ 2ðP21þ2P23r2
s Þ, Q ¼ P2

11þP2
21þ4ðP11P13þP21P23Þr

2
s þ3ðP2

13þP2
23Þr

4
s :

The periodic solution bifurcates when there is at least one eigenvalue that is non-hyperbolic. The bifurcation point of
periodic solution plays an important role in suppressing the forced response of the system. From the control point of view,
the optimum of controlling parameter m should be chosen such that dr=dm¼ 0, d2r=dm240 (i.e. m is the local minimum
point in the(r, m)space) for any bifurcating time delay tc. The most feasible controlling parameter is located in the interior
of the stability region if the local optimal point cannot be found, where the amplitude of vibration is usually small.
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5.3. Quasi-periodic solutions of the forced system

Design of control strategy for the axially moving strings depends on identification of quasi-periodic solution. A global
analysis is needed to determine existence of the limit cycles of Eq. (37) corresponding to the quasi-periodic solutions of
system (1). Rewrite Eq. (37) as

_r ¼ e P21rþP23r3þpsinðfþWÞ
� �

,

_f ¼ e P11þP13r2þr�1pcosðfþWÞ
� �

, (41)

where p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

31þP2
32

q
, cosðWÞ ¼ P31=p, sinðWÞ ¼ P32=p. For p¼ 0, it is found that if P2140 and P23o0, a stable closed orbit

exists for system (34) with the amplitude and phase

rðtÞ ¼ rC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P21P�1

23

q
, fðtÞ ¼f0þeðP11þP13r2

CÞt: (42)

It is supposed that the steady state amplitude r(t) of the stable periodic solution is weakly perturbed for sufficiently
small forcing amplitude. Thus, substituting ~r ¼ r�rC into Eq. (41) yields

_~r ¼ eð�2P21 ~rþP23 ~r
3
þ3P23 ~r

2rCþpsinðfþWÞÞ,
_f ¼ eðP11þP13r2

CþP13ð~r
2
þ2~rrCÞþð~rþrCÞ

�1pcosðfþWÞÞ: (43)

By assuming ~r and p are small enough, the leading term of the quasi-periodic solution can be determined through

_~r ¼ eð�2P21 ~rþpsinðfþWÞÞ, _f ¼ eðP11þP13r2
CÞ, (44)

Hence,

~rðtÞ ¼ expð�2P21etÞðr0�epð4e2P2
21þ$

2Þ
�1
ð2eP21 sinðf0þWÞ�$cosðf0þWÞÞÞ

þepð4e2P2
21þ$

2Þ
�1
ð2eP21 sinð$tþf0þWÞ�$cosð$tþf0þWÞÞ,

fðtÞ ¼$tþf0,$¼ eðP11þP13r2
CÞ, (45)

with initial condition ~r 0ð Þ ¼ r0, f 0ð Þ ¼f0: In the approximate solution of (45), there exist two incommensurate
frequencies, i.e. $, O, in Xt(0) and the phase angle will be increased to infinity as time increases. It is also noticed that f(t)
will oscillate with frequency $, since ~r and f are related with each other through higher order approximation. It is
observed that the amplitude of quasi-periodic solution as t-N becomes

r¼ rCþepð4e2P2
21þ$

2Þ
�1
ð2eP21 sinð$tþf0þWÞ�cosð$tþf0þWÞ$Þ: (46)

Alternatively, other quasi-periodic solutions of system (34) can be revealed by using the Poincaré–Bendixson theorem.
A trapping region, denoted by ðr3C , r

_
CÞ, that contains an isolated closed orbit can be constructed if there exist two concentric

circles with radii r3C and r
_

C such that _r 40 on the inner circle r¼ r3C and _r o0 on the outer circle r¼ r
_

C : Note that _r 40 holds
for any sufficiently small circle enclosing an unstable focus or node of system (41). In the following, the outer circle to
confine all trajectory flows will be found.

The non-existence condition of closed orbits of Eq. (34) is firstly considered by an energy approach [25–27]. Let A=r2,
Eq. (41) can be rewritten as

_A ¼ 2eðP21AþP23A2þ
ffiffiffi
A
p

psinðfþWÞÞ,
_f ¼ eðP11þP13Aþð

ffiffiffi
A
p
Þ
�1pcosðfþWÞÞ: (47)

Introducing an energy-like function

EðA,fÞ ¼ eðP11Aþ1=2P13A2þ2
ffiffiffi
A
p

pcosðfþWÞÞ: (48)

The derivative of the E function can be obtain using Eq. (47),

_E ¼ 2eAðP21þP23AÞ _f: (49)

Hence, the increment of the E function evaluated on a closed orbit is determined

DE¼

Z T

0

_Edt¼

Z 2p

0
2eAðP21þP23AÞdf: (50)

It can be demonstrated that for Eq. (50), if P21P2340 for r4rC or P21P23o0 for rorC in the region defined, there is no
limit cycle corresponding to the bounded-phased quasi-periodic solution of Eq. (34), since DEa0. The necessary condition
for existence of the modulated quasi-periodic solutions is P21P23o0 and the flow must cross the boundary of the trapping
region outwardly. Satisfaction of these conditions gives the upper boundary of the trapping region from the first equation
of (47)

P21ARþP23A2
Rþ

ffiffiffiffiffiffi
AR

p
po0 (51)

on condition that sinðfþWÞr1. The trapping region ðr3C ,
ffiffiffiffiffiffi
AR

p
Þ can be constructed if condition

ffiffiffiffiffiffi
AR

p
4r3C is satisfied.

In the next section, the two different quasi-periodic solutions are illustrated with varying time delays.



L.F. Lü et al. / Journal of Sound and Vibration 329 (2010) 5434–5451 5445
6. Numerical illustrations

The explicit dynamics of both periodic and quasi-periodic solutions derived above are illustrated with examples
focusing on the effect of time delay. The numerical integration is performed to examine the validity and accuracy of the
analytical explicit solutions. The BS (2, 3) Runge–Kutta method for solving delayed differential equations (DDEs) is adopted
to obtain numerical results [36].

An axially moving string without external loadings is selected as the first example with parameters:
ac ¼�2,a¼ 0,tc ¼ 0:16465,vc ¼ 0:1,v¼ 0 and k3=5. As shown in Fig. 2 the critical point is located on curve tc0,1 through
which the second mode of system (1) becomes unstable with increasing time delay such that the supercritical Hopf
bifurcation occurs. The second mode dominates the corresponding bifurcating periodic solutions since the component of
the first mode in the response is extinguished for a sufficiently long time. The approximate solution of the second mode
and the numerical simulation with several perturbations of time delay are shown in Fig. 4, where the approximate
solutions are obtained

q2ðtÞ ¼ 0:2334
ffiffiffi
t
p

sinð ~ot�1tÞ�0:2684
ffiffiffi
t
p

cosð ~ot�1tÞþOð
ffiffiffi
t
p 3
Þ,

_q2ðtÞ ¼�2:5501
ffiffiffi
t
p

sinð ~ot�1tÞ�2:2176
ffiffiffi
t
p

cosð ~ot�1tÞþOð
ffiffiffi
t
p 3
Þ,

where the frequency is ~o ¼ 1:5644þ13:1008tþOðt2
Þ:Fig. 4 shows that the analytical solutions are capable of predicting

bifurcation of the periodic solutions when the time delay is nearly critical. There is a noticeable diversity when the
perturbation of time delay is large since the center manifold is essentially accurate only for reduction of local dynamics.
Fig. 4. A comparison between the approximate solutions and the numerical solutions of the second mode in phase space for different time delays:

(a) t¼ 0:005, (b) t¼ 0:01, (c) t¼ 0:05, and (d) t¼ 0:1, where the approximate solutions and the numerical solutions are represented by the solid lines and

the dash-dotted lines with crossing symbols, respectively.
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Nevertheless, the analytical expression can be used as initial condition for an improved numerical solution. The analytical
solutions and numerical results of forced axially moving strings differ in a similar manner when the frequency is closed to
the critical frequency in the sense that the frequency of the periodic solutions of the forced system is phase-modulated.

As for the forced systems, we focused on the bifurcation of periodic solutions and analyzed the effect of time delay and
external excitations on local dynamics of the system. Two systems denoted by I and II are analyzed. Parameters tc=0.2,
ac=�1.1349, bc=7.7881and a¼�0:01 are assigned to system I and tc=2.18, ac=�0.21986, bc ¼ 6:4425,a¼ 0 to system II
with m¼ 0,v¼ 0:1,e�3/2fa=0.5 throughout. It can be seen from Fig. 2 that the selected Hopf points are located at tc0,1 and
tc2,1, at the right boundary of the stable regions I and II, respectively. For system I, the averaged equations of the reduced
equation on the center manifold which are obtained by substituting the numerical values of the corresponding coefficients
in Eq. (37) are found to be

_r ¼ eðð0:000747þ1:739179tÞr�ð96:566071X2
þ482:830353tX2

þ96:913411þ484:567055tÞr3

þ0:000011ð0:2þtÞ2X�2 sinðfÞþ0:000002ð0:2þtÞ2 cosðfÞÞ,
r _f ¼ eðð2:174851tð1þX2

Þþ0:500982�0:499018X2
ÞX�1rþð133:118652X�1

þ665:593261tX�1

þ168:58179Xþ842:908951tXþ37:286419X3
þ186:432093tX3

Þr3

þ0:000011ð0:2þtÞ2X�2 cosðfÞ�0:000002ð0:2þtÞ2 sinðfÞÞ: (52)

The phase-locked periodic solutions, i.e. the fixed points of Eq. (13), are obtained numerically through solving Eq. (52)
by requiring _r ¼ _f ¼ 0. The amplitudes for systems I and II are shown in Fig. 5(a) with t¼ 0:01, where the solid and dashed
lines represent stable and unstable motions, respectively. The curves of the amplitude are also marked by letters F and N,
which stand for fixed points of focus and node, respectively. The stable periodic solutions of primary resonance only exist
Fig. 5. The external excitation–response curves of the reduced equation for system I and II: (a) amplitude response curve for system I with s¼ 0:01 and

(b) the influence of the time delay on the amplitude with the fixed excitation parameter s=�0.050625 for system II, where stable equilibrium and

unstable equilibrium are denoted by solid line and dashed line, respectively, and F represents focus, N for node.
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for external frequency OA(0.94925, 1.17196), shown as segments (b, c), (e, f) and (c, d) in Fig. 5(a). Other segments on the
amplitude curve are unstable foci (a, b) and (f, g), and unstable node (d, e). For system II, the r�t curve in Fig. 5(b) shows
the amplitude of a typical soft-spring system. The stability of the periodic solutions is different from that of system I. The
stable foci are shown as segments (a0, b0) and (e0, f0), and the stable nodes are shown as (b0, c0) and (d0, e0). The unstable node
is shown as segment (c0, d0) and unstable focus is shown as segment (f’, g0).

To demonstrate the influences of time delay on bifurcation of periodic solutions in the case of primary resonance, the
three dimensional space ðt,r,XÞ is shown in Fig. 6(a) for system I with fa=0.5, and ðt,r,faÞ is shown in Fig. 6(b) for system II
with s=�0.050625. The solid lines are zeroes of determinant of the characteristic polynomial, i.e. D¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2�4Q

p
, in

Eq. (40).The dotted-dashed lines are points of P=0, and dashed lines are those of Q=0, respectively. The stability boundaries
are crucial for determining the feasible interval of controlling time delay for given forcing frequencies or amplitudes, since
conditions for minimizing r: dr=dt¼ 0, d2r=dt240 are not satisfied in this case. Based on Eq. (40), the stability can be
changed in two ways. One is that Q=0, Po0 corresponding to the boundary of saddle to stable node marked by downward
triangles in Fig. 6. The other is P=0,Q40 representing the separatrix of stable focus and unstable focus marked by upward
triangles. For system I, the interior of the curved surface S as shown in Fig. 6(a) formed by those two boundaries is the
stable region. By contrast, there exist two similar curved surfaces ~S1 and ~S2 for system II, where the amplitude of periodic
solutions in ~S1 is smaller than that of ~S2. For clarity, the bifurcation curves are projected to parametric spaces ðt,rÞ and the
Fig. 6. The bifurcation curves and the stable regions of periodic solutions for (a) system I with fa=0.5 and (b) system II with r=�0.050625.



Fig. 7. The stable regions of periodic solutions in two dimensional spaces ðt,rÞfor (a) system I with fa=0.5 and (b) system II with r=�0.050625.
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stable regions are denoted by shaded areas for system I with fa=0.5 in Fig. 7(a)(O is not shown) and for system II with
s=�0.050625 in Fig. 7(b) (fa is not shown).

Next, the quasi-periodic solutions in the unstable regions of periodic solutions of the system I are discussed. For
system I with t¼ 0:01, it is obtained that P21=0.0181440 and P23=�(101.3944O2+101.7591)o0. The two kinds of quasi-
periodic solutions analyzed in Section 5.3 are found by numerically solving the averaged equation of the reduced system,
as shown in Fig. 8(a, b). Fig. 8(a) shows the time trajectory of the phase angle and the phase portrait of the local coordinate
on the center manifold of the quasi-periodic solutions with infinite phase when O=0.9. For O=1.2, the equilibrium
(rC=0.008557) of system I is an unstable focus and we expect that there exists a unique one-period quasi-periodic solution.
The corresponding limit cycle is predicted in the annals (0, 0.01047) of coordinates z1 and z2. It is shown in Fig. 8(b) that the
numerical result of the limit cycle is restricted in (0.001218, 0.009551) in magnitude, which is in good agreement with the
analytical prediction. To identify the predicted quasi-periodic solutions, the Poincaré mapping method is used through
defining a Poincaré plane as fðq1ðtÞ, _q1ðtÞÞ9q2ðtÞ40, _q2ðtÞ ¼ 0g. The initial conditions ðq1, _q1,q2, _q2Þ ¼ ð0:01,0,�0:05,0Þ are used
along with trivial histories of time delay. In Fig. 9, the Poincaré map for the original modal ordinates corresponding to
quasi-periodic solutions of system I is demonstrated, where O=0.9 in Fig. 9(a) and O=1.2 in Fig. 9(b).
7. Discussions and conclusions

In this paper, the local dynamics near the Hopf bifurcation points for an axially moving string under wind excitations
with a direct linear time-delayed velocity feedback controller is analytically developed through the center manifold
reduction. For the subcritical system of the string, the stability of static configuration is analyzed and multiple stable



Fig. 8. Limit cycles of the reduced equation of system I for (a) X=0.9 and (b) X=1.2.

Fig. 9. Poincaré maps of the quasi-periodic solutions for system I (a) X=0.9 and (b) X=1.2, where the Poincaré plane is taken from ðq1 , _q1Þ with

q2 40, _q2 ¼ 0:
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regions are found in the controlling parameter spaces (a, t), in which the responses of the self-excited system are
suppressed. It is observed that the stability of the equilibrium of the controlled system without time delay is not affected
by small time delays. In addition, the equilibrium loses its stability through Hopf bifurcation. The reduced system’s
dynamics on the center manifold is derived through the center manifold reduction. After the Hopf bifurcation the
approximate analytical steady-state periodic solutions of the controlled system are obtained in the neighborhood of the
Hopf bifurcation points with no external excitations and with primary resonance excitation through the perturbation
method. The bifurcation diagrams of the periodic solutions show that time delay has a significant effect on the dynamics of
the system. Based on numerical results, the local perturbation time delay is capable of suppressing vibration responses of
the string. Quasi-periodic motions can be observed and are expected when the periodic solutions become unstable. One
has an infinite phase and the other is one-periodic quasi-periodic solution with a periodic time-varying phase. The
numerical results demonstrated the validity of the analytical prediction.
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It is known that there are at most two periodic solutions for self-excited system if the first two coupling modes are
considered in the uncontrolled system without external excitations. Each of the solutions is related to either the first or the
second mode separately, acting like two single degree-of-freedom oscillators. Presence of the time delay leads to the
change in the total number of Hopf bifurcation. It is an interesting question that whether or not the two additive Hopf
bifurcations have an effect on the number of limit cycles, which can be considered as the extension of the second part of
Hilbert’s sixteenth problem. The answer to this question may involve the center manifold reduction with unstable
manifolds. Further discussion is expected on global optimal control of the string vibration. In spite of these open problems
yet to be solved, the techniques developed and applied in the present paper have obvious applications in practice.
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